余数组成的数列是?|四年级奥数题及答案
有一个数列: 1,2,3,5,8,13,……。(从第3个数起,每个数恰好等于它前面相邻两个数的和) 求第1993个数被6除余几?(这道题需要你耐心解答呦) 分析:如果能知道第1993个数是哪个数,问题很容易解决。可是要做到这一点不容易。由于我们所研究的是“余数”,如能构造出数列各项被6除,余数构成的数列,问题也可以得到解决。
解:根据“如果一个数等于几个数的和,那么这个数被a除的余数,等于各个加数被a除的余数的和再被a除的余数”。得到数列各项被6除,余数组成的数列是: 1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,……。 观察规律,发现到第25项以后又重复出现前24项。呈现周期性变化规律。一个周期内排有24个数。(余数数列的前24项) 1993÷24=83……1。 第1993个数是第84个周期的第1个数。因此被6除是余1。
编辑整理:数学课,如若转载,请注明出处:https://www.shuxueke.net/2023/04/2102.html